Winding-MMF-based design and investigation of dual-winding hybrid-tooth vernier permanent magnet motor with reduced torque ripple and improved power factor

Author:

Shan Wu1,Fan Deyang1ORCID,Zhu Xiaoyong1,Xiang Zixuan1,Quan Li1

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University , Zhenjiang 212013, China

Abstract

In this paper, in order to further reduce torque ripple and improve power factor, a new vernier permanent magnet motor is proposed, in which the design concept of dual-winding hybrid-tooth configuration is incorporated. In order to clarify motor torque ripple and power factor, the winding-magnetomotive-force-based design and analysis method is proposed, in which harmonic characteristics are considered as key factors during the magnetic field modulation process. The relationship between harmonics generated by winding MMF, torque ripple, and power factor are investigated. In addition, the split-tooth vernier permanent magnet motor is also investigated as a referenced motor. Detailed comparisons between the DWHT-VPM motor and ST-VPM motor are carried out, including air gap magnetic field, torque, and power factor. Both theoretical and simulation results verify the reasonability of the proposed DWHT-VPM motor, and the effectiveness of the proposed winding-MMF-based analysis method, which provide a new potential research path for the design and analysis of flux modulation motors.

Funder

Natural Science Foundation of Jiangsu Province for Youth

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3