The interplay of vibronic and spin–orbit coupling in the fluorescence quenching in trans-dithionated PDI

Author:

Dakua Kishan Kumar1ORCID,Rajak Karunamoy2ORCID,Mishra Sabyashachi1ORCID

Affiliation:

1. Department of Chemistry, Indian Institute of Technology Kharagpur 1 , Kharagpur, India

2. Centre for Theoretical Studies, Indian Institute of Technology Kharagpur 2 , Kharagpur, India

Abstract

Organic chromophores such as the thionated derivatives of perylene diimides (PDIs) show prolonged triplet-excited state lifetimes in contrast to their pristine parent PDI molecule, which shows near unity fluorescence quantum yield. The excited state dynamics in the trans-dithionated PDI (S2-PDI) are studied here. Unlike PDI, the photo absorbing ππ* state of S2-PDI is in close proximity to quasi-degenerate nπ* states. The latter exhibits an interesting vibronic problem leading to the breaking of orbital symmetry mediated through non-totally symmetric vibrations. The time-dependent quantum dynamics are studied with a diabatic model Hamiltonian involving three singlet and three triplet states coupled via 22 vibrational modes. A combined effect of multiple internal-conversion and inter-system crossing (ISC) pathways leads to population transfer from the 1ππ* state to the 3ππ* state via the nπ* states, with an overall ISC rate of 0.70 ps that compares well with the experimental value. The calculated absorption spectra for PDI and S2-PDI reproduce the essential vibronic features in the observed experimental spectra. The dominant vibronic progressions are found to have significant contributions from the vinyl stretching modes of the PDI core.

Funder

Science and Engineering Research Board

Human Resource Development Group

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3