Cubic Mn3Ge thin films stabilized through epitaxial growth as a candidate noncollinear antiferromagnet

Author:

Markou Anastasios12ORCID,Taylor James M.34ORCID,Gayles Jacob5ORCID,Sun Yan6ORCID,Kriegner Dominik7ORCID,Grenzer Joerg8,Guo Shanshan1ORCID,Schnelle Walter1ORCID,Lesne Edouard1ORCID,Felser Claudia1ORCID,Parkin Stuart S. P.3ORCID

Affiliation:

1. Department of Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids 1 , 01187 Dresden, Germany

2. Department of Physics, University of Ioannina 2 , 45110 Ioannina, Greece

3. NISE Department, Max Planck Institute of Microstructure Physics 3 , 06120 Halle, Germany

4. Institute of Physics, Martin Luther University Halle-Wittenberg 4 , 06120 Halle, Germany

5. Department of Physics, University of South Florida 5 , Tampa, Florida 33620, USA

6. Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences 6 , Shenyang 110016, China

7. Institute of Physics, Czech Academy of Sciences 7 , 16253 Praha 6, Czech Republic

8. Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf 8 , 01328 Dresden, Germany

Abstract

Metallic antiferromagnets with chiral spin textures induce Berry curvature-driven anomalous and spin Hall effects that arise from the topological structure of their electronic bands. Here, we use epitaxial engineering to stabilize (111)-oriented thin films of Mn3Ge with a cubic phase. This cubic phase is distinct from tetragonal ferrimagnetic and hexagonal noncollinear antiferromagnetic structures with the same chemical composition. First-principles calculations indicate that cubic Mn3Ge will preferentially form an all-in/all-out triangular spin texture. We present evidence for this noncollinear antiferromagnetism through magnetization measurements with a Néel temperature of 490 K. First-principles calculations of the corresponding band structure indicate the presence of Weyl points. These highlight cubic Mn3Ge as a candidate material for topological antiferromagnetic spintronics.

Funder

EU FET Open RIA

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Air Force Office of Scientific Research

Ministry of Education of the Czech Republic

Czech Academy of Sciences

Czech Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3