Image recognition based on optical reservoir computing

Author:

Li Jiayi1,Cai Qiang1,Li Pu12ORCID,Yang Yi1,Alan Shore K.3ORCID,Wang Yuncai2

Affiliation:

1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China

2. Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

3. School of Computer Science and Electronic Engineering, Bangor University, Wales LL57 1UT, United Kingdom

Abstract

We propose an image recognition approach using a single physical node based optical reservoir computing. Specifically, an optically injected semiconductor laser with self-delayed feedback is used as the reservoir. We perform a handwritten-digit recognition task by greatly increasing the number of virtual nodes in delayed feedback using outputs from multiple delay times. Final simulation results confirm that the recognition accuracy can reach 99% after systematically optimizing the reservoir hyperparameters. Due to its simple architecture, this scheme may provide a resource-efficient alternative approach to image recognition.

Funder

National Natural Science Foundation of China

Program for Guangdong Introducing Innovative and Entrepreneurial Teams

Natural Science Foundation of Shanxi Province

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference34 articles.

1. Recent advances in physical reservoir computing: A review

2. Limitations of the Recall Capabilities in Delay-Based Reservoir Computing Systems

3. Temporal data classification and forecasting using a memristor-based reservoir computing system

4. B. Schrauwen, D. Verstraeten, and J. VanCampenhout, “An overview of reservoir computing: Theory, applications and implementations,” in Proceedings of the 15th European Symposium on Artificial Neural Networks (ESANN) (Bruges, 2007), pp. 471–482.

5. Information processing using a single dynamical node as complex system

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3