Nanostructure enabled extracellular vesicles separation and detection

Author:

He Xinyuan1,Wei Wei1,Duan Xuexin12

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University 1 , Tianjin 300072, China

2. Department of Chemistry, School of Science, Tianjin University 2 , Tianjin 300072, China

Abstract

Extracellular vesicles (EVs) have recently attracted significant research attention owing to their important biological functions, including cell-to-cell communication. EVs are a type of membrane vesicles that are secreted into the extracellular space by most types of cells. Several biological biomolecules found in EVs, such as proteins, microRNA, and DNA, are closely related to the pathogenesis of human malignancies, making EVs valuable biomarkers for disease diagnosis, treatment, and prognosis. Therefore, EV separation and detection are prerequisites for providing important information for clinical research. Conventional separation methods suffer from low levels of purity, as well as the need for cumbersome and prolonged operations. Moreover, detection methods require trained operators and present challenges such as high operational expenses and low sensitivity and specificity. In the past decade, platforms for EV separation and detection based on nanostructures have emerged. This article reviews recent advances in nanostructure-based EV separation and detection techniques. First, nanostructures based on membranes, nanowires, nanoscale deterministic lateral displacement, and surface modification are presented. Second, high-throughput separation of EVs based on nanostructures combined with acoustic and electric fields is described. Third, techniques combining nanostructures with immunofluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrochemical detection, or piezoelectric sensors for high-precision EV analysis are summarized. Finally, the potential of nanostructures to detect individual EVs is explored, with the aim of providing insights into the further development of nanostructure-based EV separation and detection techniques.

Publisher

AIP Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3