Ultrawide bandgap willemite-type Zn2GeO4 epitaxial thin films

Author:

Luo Sijun1ORCID,Trefflich Lukas1ORCID,Selle Susanne2ORCID,Hildebrandt Ron1ORCID,Krüger Evgeny1ORCID,Lange Stefan3ORCID,Yu Jingjing1ORCID,Sturm Chris1ORCID,Lorenz Michael1ORCID,Wenckstern Holger von1,Hagendorf Christian3ORCID,Höche Thomas2,Grundmann Marius1ORCID

Affiliation:

1. Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Universität Leipzig 1 , 04103 Leipzig, Germany

2. Fraunhofer Institute for Microstructure of Materials and Systems (IMWS) 2 , 06120 Halle, Germany

3. Fraunhofer Center for Silicon Photovoltaics CSP 3 , 06120 Halle, Germany

Abstract

Willemite-type Zn2GeO4 is a promising ultrawide bandgap semiconductor material. To date, experimental results on growth and physical properties of epitaxial thin films of willemite-type Zn2GeO4 are not available. Here, we report the heteroepitaxial growth of (00.1)-oriented Zn2GeO4 thin films on c-plane sapphire substrates using pulsed laser deposition. The in-plane orientation relationships are [11.0] Zn2GeO4//[11.0] Al2O3 and [11¯.0] Zn2GeO4//[11¯.0] Al2O3. A 450 nm thick epitaxial film with a surface roughness of 2.5 nm deposited under 0.1 mbar oxygen partial pressure exhibits a full width at half maximum (FWHM) of rocking curve of (00.6) reflex of 0.35°. The direct bandgap is evaluated to be 4.9 ± 0.1 eV. The valence band maximum is determined to be 3.7 ± 0.1 eV below the Fermi level. Together with the density-functional theory band structure calculation, it is suggested that the O 2p orbital and Zn 3d orbital dominantly contribute to the valence band of Zn2GeO4. The steady-state photoluminescence (PL) spectra of the films under 266 nm excitation at room temperature exhibit a broad defect-related emission band centered at 2.62 eV with a FWHM of 0.55 eV. The origin of this native defect-related PL is suggested to correlate with Zn interstitials. This work advances the fundamental study on willemite-type Zn2GeO4 epitaxial thin films for potential device application.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3