High-magnification Faraday rotation imaging and analysis of X-pinch implosion dynamics

Author:

Dowhan G. V.1ORCID,Shah A. P.1ORCID,Sporer B. J.2ORCID,Jordan N. M.2ORCID,Bland S. N.3ORCID,Lebedev S. V.3ORCID,Smith R. A.3ORCID,Suttle L.3ORCID,Pikuz S. A.4ORCID,McBride R. D.12ORCID

Affiliation:

1. Applied Physics Program, University of Michigan 1 , Ann Arbor, Michigan 48109, USA

2. Nuclear Engineering and Radiological Sciences, University of Michigan 2 , Ann Arbor, Michigan 48109, USA

3. Department of Physics, Imperial College London 3 , London SW7 2AZ, United Kingdom

4. Lebedev Physical Institute, Russian Academy of Sciences 4 , Moscow 119991, Russia

Abstract

An X-pinch load driven by an intense current pulse (>100 kA in ∼100 ns) can result in the formation of a small radius, runaway compressional micro-pinch. A micro-pinch is characterized by a hot (>1 keV), current-driven (>100 kA), high-density plasma column (near solid density) with a small neck diameter (1–10 µm), a short axial extent (<1 mm), and a short duration (≲1 ns). With material pressures often well into the multi-Mbar regime, a micro-pinch plasma often radiates an intense, sub-ns burst of sub-keV to multi-keV x rays. A low-density coronal plasma immediately surrounding the dense plasma neck could potentially shunt current away from the neck and thus reduce the magnetic drive pressure applied to the neck. To study the current distribution in the coronal plasma, a Faraday rotation imaging diagnostic (1064 nm) capable of producing simultaneous high-magnification polarimetric and interferometric images has been developed for the MAIZE facility at the University of Michigan. Designed with a variable magnification (1–10×), this diagnostic achieves a spatial resolution of ∼35 µm, which is useful for resolving the ∼100-μm-scale coronal plasma immediately surrounding the dense core. This system has now been used on a reduced-output MAIZE (100–200 kA, 150 ns) to assess the radial distribution of drive current immediately surrounding the dense micro-pinch neck. The total current enclosed was found to increase as a function of radius, r, from a value of ≈50±25 kA at r ≈ 140 µm (at the edge of the dense neck) to a maximal value of ≈150±75 kA for r ≥ 225 µm. This corresponds to a peak magnetic drive pressure of ≈75±50 kbar at r ≈ 225 µm. The limitations of these measurements are discussed in the paper.

Funder

Office of Science

DOE NNSA SSAP

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3