Optical injection locking and optical-fiber data transmission by directly modulated wavelength tunable laser transmitters

Author:

Zakhleniuk N.1ORCID,Duzgol O.1ORCID

Affiliation:

1. School of Computer Science and Electronic Engineering, University of Essex , Colchester, CO4 3SQ Essex, United Kingdom

Abstract

Enhancement of the small- and large-signal modulation performance of wavelength tunable laser diode (TLD) transmitters under strong optical injection locking (OIL) is investigated numerically in back-to-back and optical-fiber transmission schemes. Our model is based on the spatiotemporal description of laser dynamics as due to the composite cavity design of TLDs, the usual rate equation formalism is not directly applicable. We demonstrate that TLD transmission strongly depends on wavelength tuning, which was investigated over a 21-nm range between 1529 and 1550 nm emission wavelengths. The best performance for both free-running (FR) and OIL TLDs is achieved at shorter wavelengths, 1529 nm for our device. Although in both cases this is due to larger differential material gain at shorter wavelengths, the underlying physics of the effect is completely different. For an FR TLD, it is the resonance oscillation frequency (ROF) that defines the best modulation speed, while for an OIL TLD, the achievable modulation speed depends on the cavity mode shift due to optical injection. Both the ROF and the cavity mode shift increase when the differential gain increases. However, the ROF is the device’s fixed parameter, while the cavity mode shift is defined by the OIL conditions, and thus, it can be optimized. The superior performance of the optical fiber digital data transmission with the OIL TLD is demonstrated at around 20-Gb/s modulation speed for standard fibers. This result is attributed to an enhanced modulation response and suppressed frequency chirping of the OIL TLD, and it is important for practical utilization of TLD transmitters.

Funder

University of Essex

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3