Affiliation:
1. School of Aeronautics and Astronautics, Zhejiang University 1 , Hangzhou, China
2. Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University 2 , Haining, China
Abstract
The advancement of aircraft engines relies heavily on film cooling technology. To enhance the film cooling efficiency in high-pressure turbines, many passive flow control methods have been explored. Downstream of the cooling hole, a semi-sphere vortex generator (SVG) decreases the lateral dispersion of the coolant and increases the efficiency of film cooling. To better understand the influence and uncertainty of SVG parameters such as the compound angle, size, and location, a supervised learning-based artificial neural network model is developed to identify the nonlinear mapping between the input parameters and the horizontal-averaged film cooling efficiency. Training data are generated by computational fluid dynamics. The model is quite accurate and stable after sufficient testing and validation. Through Monte Carlo simulations, the framework is used to analyze the thermal and flow characteristics of the film cooling efficiency. The radius of the SVG dominates the film cooling effectiveness at low blowing ratios, whereas at comparatively large blowing ratios, the angular placement of the SVG downstream of the cooling hole is the most important element. The angular position of the SVG has a much stronger impact than the distance at both low and high blowing ratios between the cooling hole and the SVG.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献