A surface-normal photodetector as nonlinear activation function in diffractive optical neural networks

Author:

Ashtiani F.1ORCID,Idjadi M. H.1ORCID,Hu T. C.1,Grillanda S.1ORCID,Neilson D.1ORCID,Earnshaw M.1,Cappuzzo M.1ORCID,Kopf R.1,Tate A.1,Blanco-Redondo A.2ORCID

Affiliation:

1. Nokia Bell Labs 1 , 600 Mountain Ave., Murray Hill, New Jersey 07974, USA

2. College of Optics and Photonics (CREOL), University of Central Florida, 2 4304 Scorpius Street, Orlando, Florida 32816, USA

Abstract

Optical neural networks (ONNs) enable high speed, parallel, and energy efficient processing compared to their conventional digital electronic counterparts. However, realizing large scale ONN systems is an open problem. Among various integrated and non-integrated ONNs, free-space diffractive ONNs benefit from a large number of pixels of spatial light modulators to realize millions of neurons. However, a significant fraction of computation time and energy is consumed by the nonlinear activation function that is typically implemented using a camera sensor. Here, we propose a novel surface-normal photodetector (SNPD) with an optical-in–electrical-out (O–E) nonlinear response to replace the camera sensor that enables about three orders of magnitude faster (5.7 µs response time) and more energy efficient (less than 10 nW/pixel) response. Direct efficient vertical optical coupling, polarization insensitivity, inherent nonlinearity with no control electronics, low optical power requirements, and the possibility of implementing large scale arrays make the SNPD a promising O–E nonlinear activation function for diffractive ONNs. To show the applicability of the proposed neural nonlinearity, successful classification simulations of the MNIST and Fashion MNIST datasets using the measured response of SNPD with accuracy comparable to that of an ideal ReLU function are demonstrated.

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3