Acoustic skin effect with non-reciprocal Willis materials

Author:

Cheng Wen1ORCID,Hu Gengkai1ORCID

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The Willis material model, coupling kinetic energy with a potential one, is shown to equip an extraordinary capacity in characterizing complex acoustic and elastic wave phenomena of metamaterials. This model has been further extended to active systems via breaking the symmetry between two coupling coefficients, leading to odd or non-reciprocal Willis material models [Quan et al., Nat. Commun. 12(1), 2615 (2021)]. In this work, through a 2D homogenous non-reciprocal acoustic Willis material (NRAWM), we demonstrate that the bulk local mode, referred to as skin effect in non-Hermitian systems, can survive on boundary of NRAWMs under proper conditions. The direction of the localization is closely related to the intrinsic direction embedded in the NRAWMs, and the localization is robust and topologically protected. To validate the prediction, a 2D discrete lattice made of non-local active acoustic scatterers is proposed and then homogenized as a NRAWM based on the retrieval method. The far-field radiation patterns of the local modes for both the 2D discrete lattice and the homogenized 2D NRAWM are evaluated, and they are in good agreement with each other. This work paves the way to design and explore the rich wave phenomena in non-Hermitian acoustic systems.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3