Mode interpretation and force prediction surrogate model of flow past twin cylinders via machine learning integrated with high-order dynamic mode decomposition

Author:

Liu TingtingORCID,Zhou LeiORCID,Tang HuiORCID,Zhang HongfuORCID

Abstract

Understanding and modeling the flow field and force development over time for flow past twin tandem cylinders can promote insight into underlying physical laws and efficient engineering design. In this study, a new surrogate model, based on a convolutional neural network and higher-order dynamic mode decomposition (CNN-HODMD), is proposed to predict the unsteady fluid force time history specifically for twin tandem cylinders. Sampling data are selected from a two-dimensional direct numerical simulation flow solution over twin tandem cylinders at different aspect ratios (AR = 0.3–4), gap spacing (L* = 1–8), and Re = 150. To promote insight into underlying physical mechanisms and better understand the surrogate model, the HODMD analysis is further employed to decompose the flow field at selected typical flow regimes. Results indicate that CNN-HODMD performs well in discovering a suitable low-dimensional linear representation for nonlinear dynamic systems via dimensionality augment and reduction technique. Therefore, the CNN-HODMD surrogate model can efficiently predict the time history of lift force at various AR and L* within 5% error. Moreover, fluid forces, vorticity field, and power spectrum density of twin cylinders are investigated to explore the physical properties. It was found three flow regimes (i.e., overshoot, reattachment, and coshedding) and two wake vortex patterns (i.e., 2S and P). It was found the lift force of the upstream cylinder for AR < 1 is more sensitive to the gap increment, while the result is reversed for the downstream cylinder. It was found that the fluctuating component of the wake of cylinders decreases with increasing AR at L* = 1. Moreover, flow transition was observed at L* = 4.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3