Inside and out: Surface thermodynamics from positive to negative curvature

Author:

Martin Seth C.1,Hansen-Goos Hendrik2,Roth Roland2ORCID,Laird Brian B.3ORCID

Affiliation:

1. Department of Chemistry, University of St. Mary, Leavenworth, Kansas 66048, USA

2. Institute for Theoretical Physics, University of Tübingen, 72076 Tübingen, Germany

3. Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

Abstract

To explore the curvature dependence of solid–fluid interfacial thermodynamics, we calculate, using Grand Canonical Monte Carlo simulation, the surface free energy for a 2 d hard-disk fluid confined in a circular hard container of radius R as a function of the bulk packing fraction η and wall curvature [Formula: see text]. (The curvature is negative because the surface is concave.) Combining this with our previous data [Martin et al., J. Phys. Chem. B 124, 7938–7947 (2020)] for the positive curvature case (a hard-disk fluid at a circular wall, [Formula: see text]), we obtain a complete picture of surface thermodynamics in this system over the full range of positive and negative wall curvatures. Our results show that γ is linear in [Formula: see text] with a slope that is the same for both positive and negative wall curvatures, with deviations seen only at high negative curvatures (strong confinement) and high density. This observation indicates that the surface thermodynamics of this system is consistent with the predictions of so-called morphometric thermodynamics at both positive and negative curvatures. In addition, we show that classical density functional theory and a generalized scaled particle theory can be constructed that give excellent agreement with the simulation data over most of the range of curvatures and densities. For extremely high curvatures, where only one or two disks can occupy the container at maximum packing, it is possible to calculate γ exactly. In this limit, the simulations and density functional theory calculations are in remarkable agreement with the exact results.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluids meet solids;The Journal of Chemical Physics;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3