A simple two-step strategy to synthesize defect-rich MoS2 nanocrystals for enhanced electrochemical hydrogen evolution

Author:

Sahoo Dhirendra1ORCID,Shakya Jyoti2ORCID,Choudhry Sudipta1,Singh Budhi3,Kaviraj Bhaskar1

Affiliation:

1. Department of Physics, School of Natural Sciences, Shiv Nadar University, Goutam Budha Nagar, Uttar Pradesh 201314, India

2. Department of Physics, Indian Institute of Science Bangalore, Bangalore 560012, India

3. School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea

Abstract

MoS2 based materials are considered the most reliable alternative catalysts for the hydrogen evolution reaction (HER), where engineering of active sites has emerged as an acceptable approach to tune their HER activity. In this approach, the dispersion of bulk MoS2 in the aqueous phase was increased with a surfactant (sodium dodecyl sulfate), which reduced the exfoliation time and enhanced the exfoliation ability to produce layered MoS2 nanosheets. During the hydrothermal treatment, the nanosheets were further scissored into small nanocrystals. Nanocrystals have attractive properties with stable dispersion and high-water solubility. Our method provides a scalable, eco-friendly, easy, and low-cost strategy for designing other HER catalysts. Such ultra-small MoS2 nanocrystals with rich Mo vacancies were used as catalysts for HER, which showed excellent electrocatalytic activity with a low overpotential (95 mV) and small Tafel slope (41 mV/dec) in 0.5M H2SO4 electrolyte. The design and synthesis of the HER catalyst in this work presents a promising path for preparing active and stable electrocatalysts to replace costly metal-based catalysts for hydrogen production.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3