Affiliation:
1. Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, USA
Abstract
Fe(II)–porphyrin complexes exhibit a diverse range of electronic interactions between the metal and macrocycle. Herein, the incremental full configuration interaction method is applied to the entire space of valence orbitals of a Fe(II)–porphyrin model using a modest basis set. A novel visualization framework is proposed to analyze individual many-body contributions to the correlation energy, providing detailed maps of this complex’s highly correlated electronic structure. This technique is used to parse the numerous interactions of two low-lying triplet states (3A2g and 3Eg) and to show that strong metal d–d and macrocycle π–π orbital interactions preferentially stabilize the 3A2g state. d–π interactions, on the other hand, preferentially stabilize the 3Eg state and primarily appear when correlating six electrons at a time. Ultimately, the Fe(II)–porphyrin model’s full set of 88 valence electrons are correlated in 275 orbitals, showing the interactions up to the 4-body level, which covers the great majority of correlations in this system.
Funder
U.S. Department of Energy
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献