Research on acoustic emission characteristics of metagabbros with different felsic development under splitting load

Author:

Zhang Tongzhao123ORCID,Liu Zhiqiang23,He Yongsheng4,Ji Hongguang35,Zhao Yichao6,Song Zhaoyang23

Affiliation:

1. China Coal Research Institute 1 , Beijing 100013, China

2. Beijing China Coal Mine Engineering Company Limited 2 , Beijing 100013, China

3. National Engineering Research Center of Deep Shaft Construction 3 , Beijing 100013, China

4. Institute of Defense Engineering, AMS, PLA 4 , Beijing 100036, China

5. Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing 5 , Beijing 100083, China

6. Shaanxi Yanchang Petroleum Yulin Kekegai Coal Industry Company Limited 6 , Yulin 719000, China

Abstract

The acoustic emission (AE) characteristic signal can reveal the mechanical properties of rock materials and the development characteristics of internal microcracks. Rocks with different mineral development characteristics produce different AE signals during fracture. This study selected variable metagabbros with varying feldspathic development for AE tests under splitting load. The results demonstrated that the characteristics of AE ringing counts during the Brazilian fracture of metagabbro were closely correlated with the content of felsic minerals. The cumulative AE ringing count of metagabbros with feldspar nondevelopment exceeded 250 000, while those of metagabbros with feldspar development did not reach 200 000. As the feldspathic mineral content increases, the AE ringing counts of metagabbro exhibit an increasing trend in the high-energy (1e6–+∞ aJ) and high-amplitude (90–100 dB) intervals. With the development of feldspar minerals, the fracture mode of metagabbro gradually changed from shear failure to tensile failure. The higher the development of felsic minerals, the higher the stress level corresponding to the maximum fractal dimension, the greater the energy released by rock failure, and the more severe the damage. This study is of great significance for revealing the mechanism of rock rupture.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Innovation Project of Shandong Province

Tiandi Technology Co., Ltd. Innovation and Entrepreneurship Fund Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3