Concurrent achievement of giant energy density and ultrahigh efficiency in antiferroelectric ceramics via core–shell structure design

Author:

Wu Longwen1ORCID,Lan Guitian1,Cai Ziming2ORCID,Zhao Lihua1,Lu Jian34,Wang Xiaohui5

Affiliation:

1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China

2. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

3. Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong 999077, Hong Kong

4. Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China

5. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

Abstract

The boom in high-power-density electronics and advanced pulsed power systems has led to a requirement for high-energy-density dielectric capacitors, for which the key enabler is the availability of dielectric materials with high energy densities and high efficiencies. Although antiferroelectric ceramics are promising dielectric materials with high energy densities, they have low efficiencies. In this study, we address this problem through the core–shell structure design. A phase-field model is developed by considering the core as antiferroelectric and the shell as linear dielectric, and the polarization hysteresis loops are determined. The results show that the polarization–electric field loop of the core–shell sample is slanted, with a delayed saturation polarization, decreased maximum polarization, and declined hysteresis loss compared with the pure sample. This phenomenon becomes more distinct with increasing shell fraction and decreasing shell permittivity, and vanished hysteresis is achieved in samples with a high shell fraction and a low shell permittivity. Through deconvolution, it is determined that the underlying mechanism of energy storage is the difference in the antiferroelectric polarization contribution of various shell parameters. It is found that a giant energy density of 15.5 J/cm3 and an ultrahigh efficiency of 99.7% at the saturation polarization can be achieved concurrently for a certain core–shell sample; these values considerably exceed the corresponding values (5.0 J/cm3 and 52.8%) for the pure sample. The findings of this study can serve as guidance for engineering core–shell structures, thus paving the way for enhancing the energy-storage performance of antiferroelectric ceramics.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University

the Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3