A comparison of two piezoelectric actuator concepts for fast mechanical switching in DC hybrid circuit breakers

Author:

Al-Dweikat Mohmmad1ORCID,Zhang Guogang1ORCID,Liu Yu1,Jian Cui1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University , Xi’an, Shaanxi 710049, China

Abstract

Amplified piezoelectric actuators have gained considerable attention due to their inherent advantages, including rapid response, reliability, and efficiency, making them promising candidates for Direct Current (DC) switching applications. They can operate in two distinct operational modes: Block–Free (B–F) and Free–Free (F–F) configurations. These two modes offer diverse mechanical constraints and are chosen based on the application’s specific requirements. This study aims to present a comparative assessment between the two modes to evaluate each configuration’s applicability in DC fast switching. Accordingly, the principle behind each actuation scheme was illustrated, and both designs were modeled and analyzed by the finite element method. Subsequently, two prototypes were assembled, each resembling a different operational mode. The established prototypes were then subjected to actuation and interruption tests to investigate their travel and switching performances. Comparative results revealed that while block–free could deliver a higher apparent stroke, the accumulated gap for each configuration is almost the same. Both actuators demonstrated high capability when utilized as actuation units for fast vacuum mechanical switches integrated into a hybrid circuit breaker for DC interruption. However, the free–free operation excelled in terms of fast response, as it managed to clear the mimicked fault current faster than the block–free configuration.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

AIP Publishing

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3