Design of a high-temperature cell for cobalt-60 irradiations of aqueous solutions with in situ UV–visible spectroscopy

Author:

Conrad Jacy K.1ORCID,Rollins Harry W.1ORCID,Peterman Dean R.1ORCID,Fox Robert V.1ORCID

Affiliation:

1. Idaho National Laboratory , 1955 N. Fremont Ave., Idaho Falls, Idaho 83415, USA

Abstract

To understand the speciation of solutes in aqueous solutions in high temperature radiation environments, we report the design and fabrication of a custom-built, high temperature (≤300 °C) titanium irradiation cell with in situ optical spectroscopy capabilities, as afforded by coupled fiber optic cables. The wetted surfaces of the 8-inch tall cylindrical cell with 3.5 in. diameter are entirely made of titanium, sapphire, and gold, which are chemically and radiolytically inert. The initial benchmarking results are reported, including the baseline spectrum of deionized water as a function of temperature, the stability of a spectrum over 4 h at 100 °C, and an irradiated Fricke dosimetry solution under ambient irradiator temperature conditions (27.0 ± 0.5 °C). The average gamma radiation dose rate in the cell in its current configuration is 26.1 ± 1.3 Gy min−1. This cell has application in studying several processes throughout the nuclear fuel cycle, including the reactor coolant behavior.

Funder

Laboratory Directed Research and Development

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3