Thermal conductivity of double polymorph Ga2O3 structures

Author:

Abdullaev Azat12ORCID,Sekerbayev Kairolla12ORCID,Azarov Alexander3ORCID,Venkatachalapathy Vishnukanthan3ORCID,Chauhan Vinay S.4,Utegulov Zhandos2ORCID,Kuznetsov Andrej3ORCID

Affiliation:

1. Center for Energy and Advanced Materials Science, National Laboratory of Astana, Nazarbayev University 1 , Kabanbay Batyr Ave. 53, 010000 Astana, Kazakhstan

2. Department of Physics, School of Sciences and Humanities, Nazarbayev University 2 , Kabanbay Batyr Ave. 53, 010000 Astana, Kazakhstan

3. Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo 3 , N-0316 Oslo, Norway

4. Intel Corporation 4 , Chandler, Arizona 85226, USA

Abstract

Recently discovered double gamma/beta (γ/β) polymorph Ga2O3 structures constitute a class of novel materials providing an option to modulate functional properties across interfaces without changing the chemical compositions of materials, in contrast to that in conventional heterostructures. In this work, for the first time, we investigate thermal transport in such homo-interface structures as an example of their physical properties. In particular, the cross-plane thermal conductivity (k) was measured by femtosecond laser-based time-domain thermoreflectance with MHz modulation rates, effectively obtaining depth profiles of the thermal conductivity across the γ-/β-Ga2O3 structures. In this way, the thermal conductivity of γ-Ga2O3 ranging from 1.84 to 2.11 W m−1 K−1 was found to be independent of the initial β-substrates orientations, in accordance with the cubic spinel structure of the γ-phase and consistently with the molecular dynamics simulation data. In turn, the thermal conductivity of monoclinic β-Ga2O3 showed a distinct anisotropy, with values ranging from 10 W m−1 K−1 for [−201] to 20 Wm−1 K−1 for [010] orientations. Thus, for double γ-/β-Ga2O3 polymorph structures formed on [010] β-substrates, there is an order of magnitude difference in thermal conductivity across the γ/β interface, which can potentially be exploited in thermal energy conversion applications.

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Nazarbayev University

Research Council of Norway

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3