High-quality (001) β-Ga2O3 homoepitaxial growth by metalorganic chemical vapor deposition enabled by in situ indium surfactant

Author:

Tang Wenbo12ORCID,Ma Yongjian12,Zhang Xiaodong12ORCID,Zhou Xin2ORCID,Zhang Li2,Zhang Xuan2,Chen Tiwei12ORCID,Wei Xing12ORCID,Lin Wenkui12,Mudiyanselage Dinusha Herath3ORCID,Fu Houqiang3ORCID,Zhang Baoshun12ORCID

Affiliation:

1. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 230026 Hefei, China

2. Nanofabrication facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China

3. Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA

Abstract

(001) β-Ga2O3 homoepitaxy on commercially available large-size (001) β-Ga2O3 substrates remains a significant challenge for the wide bandgap semiconductor community. In this Letter, high-quality homoepitaxial (001) β-Ga2O3 films were grown via metalorganic chemical vapor deposition (MOCVD) with the assistance of an in situ indium surfactant, where the growth modes and mechanisms were also elucidated. During the growth of β-Ga2O3, an etching process occurred by the desorption of the suboxide Ga2O, resulting in rough surface morphology with streaky grooves oriented along the [010] direction. It is postulated that the parallel grooves were associated with the surface desorption and anisotropic diffusion characteristics of β-Ga2O3. To suppress the desorption, indium surfactant was introduced into the growth environment. A 2D-like growth feature was prompted subsequently by the coadsorption of In and Ga atoms, accompanied by relatively smooth surface morphology. The crystal quality had no degradation despite the incorporation of indium in the epitaxial film. The O II peak of the β-Ga2O3 film shifted ∼0.5 eV toward higher binding energy due to an increasing number of oxygen vacancies originating from the indium incorporation. This work provides a systemic investigation on the growth of high-quality (001) β-Ga2O3 homoepitaxial films by MOCVD, which is critical for the development of β-Ga2O3 electronic devices for future power switching and RF applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3