2 expansion of the transmission probability through a barrier

Author:

Pollak Eli1ORCID,Cao Jianshu2ORCID

Affiliation:

1. Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel

2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

Ninety years ago, Wigner derived the leading order expansion term in ℏ2 for the tunneling rate through a symmetric barrier. His derivation included two contributions: one came from the parabolic barrier, but a second term involved the fourth-order derivative of the potential at the barrier top. He left us with a challenge, which is answered in this paper, to derive the same but for an asymmetric barrier. A crucial element of the derivation is obtaining the ℏ2 expansion term for the projection operator, which appears in the flux-side expression for the rate. It is also reassuring that an analytical calculation of semiclassical transition state theory (TST) reproduces the anharmonic corrections to the leading order of ℏ2. The efficacy of the resulting expression is demonstrated for an Eckart barrier, leading to the conclusion that especially when considering heavy atom tunneling, one should use the expansion derived in this paper, rather than the parabolic barrier approximation. The rate expression derived here reveals how the classical TST limit is approached as a function of ℏ and, thus, provides critical insights to understand the validity of popular approximate theories, such as the classical Wigner, centroid molecular dynamics, and ring polymer molecular dynamics methods.

Funder

Israel Science Foundation

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3