Rapid generation of massive thermodynamic datasets using frequency comb spectroscopy

Author:

Karim Faisal1ORCID,Scholten Sarah K.12ORCID,Perrella Christopher123ORCID,Luiten Andre N.12ORCID

Affiliation:

1. Institute for Photonics and Advanced Sensing (IPAS) and School of Physical Sciences, University of Adelaide 1 , Adelaide SA 5005, Australia

2. ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), University of Adelaide 2 , Adelaide, South Australia, 5005, Australia

3. Centre of Light for Life and School of Biological Sciences, University of Adelaide 3 , Adelaide SA 5005, Australia

Abstract

We demonstrate massively parallel spectroscopic measurements of 12C2H2 using an optical frequency comb. This allows for the rapid and simultaneous estimation of self-broadening and self-shifting of more than 50 optical transitions between 1512 and 1538 nm. The use of a temperature-controlled sealed gas cell allows us to measure both pressure- and temperature-mediated broadening and shifting. We present the results for the pressure-mediated self-broadening and self-shifting coefficients for 59 optical lines that make up the v1 + v3 combination band and a selection of hot bands. Our ability to measure the broadening of numerous transitions allows for the confirmation of prior work that shows that there is no measurable vibrational dependence across all acetylene bands, despite the strong dependence of the broadening coefficient on the rotational number. We also present an extensive measurement of the temperature dependence of the self-broadening for each of these 59 lines. This work shows the revolutionary power afforded by the frequency combs for rapid generation of large datasets related to thermodynamic variations of the key spectroscopic parameters of important gases.

Funder

Australian Research Council

Australian Research Council Industrial Transformation and Training Center for LNG Futures

The Government of South Australia, Premier’s Science and Research Fund

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3