Enhanced performance of a self-propelled flexible plate by a uniform shear flow and mechanism insight

Author:

Luo Xian-GuangORCID,Gao An-KangORCID,Lu Xi-YunORCID

Abstract

The hydrodynamics of a two-dimensional self-propelled flexible plate in a uniform shear flow is explored using a penalty-immersed boundary method. The leading edge of the plate is enforced into a prescribed harmonic oscillation in the vertical direction but free to move in the horizontal direction. It is found that as the shear rate increases, the input power, the propulsive velocity, and the efficiency increase. This finding means that the plate enables to get substantial hydrodynamic benefits from the shear flow. Using the force decomposition method based on the weighted integral of the second invariant of the velocity gradient tensor, the hydrodynamic force exerted on the plate is decomposed into a body-acceleration force, a vortex-induced force, and forces due to viscous effects. The results show that the body-acceleration force is the main driving force of the self-propelled motion, and that it is almost invariant with the shear rate. The vortex-induced force offers a significant contribution to the drag, and it decreases with the shear rate. The viscous friction force provides a pure drag, and it increases with the propulsion velocity. Further investigation on the vortex evolution and the vortex-induced force shows that the incoming shear flow destroys the trailing-edge vortex that sheds during the downward half period and, therefore, reduces the vortex-induced drag, which is the reason for the enhanced propulsive performance in the shear flow. The result obtained in this study provides new insight into the self-propulsion mechanism in complex incoming flows.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3