Dual-axis thrust stand for the direct characterization of electrospray performance

Author:

Gilpin Matthew R.1ORCID,McGehee Will A.1ORCID,Arnold N. Ivan1,Natisin Michael R.1,Holley Zachary A.1

Affiliation:

1. Jacobs Technology, Inc., 10 E. Saturn Blvd., Edwards AFB, California 93524, USA

Abstract

A dual-axis torsional thrust stand was successfully demonstrated at the Air Force Research Laboratory, enabling direct simultaneous thrust and mass loss measurement for the Air Force Electrospray Thruster Series 2 passively fed electrospray thruster. The dual-axis system is effectively two nulled torsional thrust stands sharing a single dual-axis gimbal with a thrust and mass resolution of ±0.2  µN and ±0.04 mg, respectively. The development of this system was inspired by a need for direct efficiency characterization of electrosprays via in situ mass measurements, and performance was compared to thruster masses measured pre- and post-testing using an analytical balance. Mass consumption data captured via the dual-axis stand, which is calibrated to a traceable uncertainty of 1.6%, varied between −5% and 18% as compared to analytical balance measurements throughout a multi-month testing effort highlighting the limitations in pre/post-weighing as a method for capturing propellant consumption due to absorption of atmospheric moisture when thrusters are removed from vacuum. Thrust stand tests were limited to short term operation with a daily available testing window of ∼5 h due to thrust stand drift following the 24 h cyclic temperature variations of the testing facility. A thorough investigation into the root cause of ambient thermal drift suggests that the thermal response of commercial flex-pivot bearings is directly producing spurious torques on the order of 10  μN m/°C. Additionally, unresolved charging effects on thrust stand hardware currently limit thrust stand operation to tests operating with a positive thruster polarity. Further development and long duration test stability require both a targeted investigation into flex-pivot thermal response and minimization of facility effects.

Funder

Air Force Research Laboratory

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3