Development and numerical investigation of Mach probe model in a hypersonic, low-temperature flowing plasma

Author:

Ichihara D.1ORCID,Sumi H.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Nagoya University , Nagoya, Aichi 464-8603, Japan

Abstract

This study conducted a numerical simulation around a Mach probe under hypersonic low-temperature plasma. The Mach probe has three ion collection planes: front, side, and back. Under a hypersonic flowing plasma, the front and side planes are practical ion collection areas, and the backplane collects no ion flux. The collected ion current density on the front plane is almost identical to that of the mainstream ion flux. By contrast, the ion current collected on the side plane is affected by the concentration of the electric field at the probe edge. As this edge effect has a different influence on the front and side planes, the ion current density ratio of the side to the front planes is dominated by a non-dimensional parameter—the ratio of electrostatic to kinetic flow energy. Based on this non-dimensional parameter, the calculated ion current density ratio can be fitted using a simple mathematical formula. Therefore, the proposed Mach probe model with non-dimensional parameters extends the conventional Mach probe model validated in sub-to-supersonic high-temperature plasma to hypersonic low-temperature flowing plasma, which is commonly observed in electric propulsions.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3