Investigation on the entropy production distribution in a multiphase pump considering gas–liquid two-phase velocity slip

Author:

Li Chen-HaoORCID,Wu Xi-TongORCID,Luo Xing-QiORCID,Feng Jian-JunORCID,Zhu Guo-JunORCID

Abstract

To study the energy loss characteristics of a semi-open mixed-flow multiphase pump, an improved entropy generation theory considering the slip velocity was established to locate local areas with high energy loss. The relationships among local entropy generation, phase interface entropy generation, wall entropy generation, and unstable flow were analyzed for each component. The results showed that magnitude of interface entropy generation was similar to turbulent entropy generation and wall entropy generation, which could not be ignored. The interface entropy generation was mainly distributed at the leading edge, trailing edge, hub, and blade tip clearance. With an increased inlet gas volume fraction, the proportion of interfacial entropy production loss to total entropy production loss increased. As the inlet gas volume fraction increased to 30%, the interface entropy generation loss accounted for 70% of the local entropy generation loss at leading edge and 63% at trailing edge. The high interface entropy generation zone at the tip clearance region began to extend from the pressure side of the blade to the suction side of the blade. During the evolution of tip leakage vortex, the generation, unstable stretching, and breakup–regeneration stages were accompanied by a large loss of interface entropy generation.

Funder

National Natural Science Foundation of China

Scientific Research Plan Projects of Shaanxi Education Department

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference42 articles.

1. Development of numerical Eulerian-Eulerian models for simulating multiphase pumps;J. Pet. Sci. Eng.,2018

2. The defining series—Electrical submersible pumps;Oilfield Rev.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3