Bidisperse beds sheared by viscous fluids: Grain segregation and bed hardening

Author:

Gonzalez Jaime O.1ORCID,Cúñez Fernando D.2ORCID,Franklin Erick M.3ORCID

Affiliation:

1. Departamento de Petróleos, Escuela Politécnica Nacional 1 , Av. Ladrón de Guevara E11-253, Quito, Ecuador

2. Department of Earth and Environmental Sciences, University of Rochester 2 , Rochester, New York 14627, USA

3. Faculdade de Engenharia Mecânica, UNICAMP - Universidade Estadual de Campinas 3 , Rua Mendeleyev, 200, Campinas, SP, Brazil

Abstract

When a granular bed is sheared by a fluid that flows above a critical limit, it undergoes a complex motion that varies along time: it can contain fluid- (bedload) and solid-like (creep) regions, being prone to strain hardening and, in the case of polydispersity, segregation. In this paper, we investigate experimentally the short- and long-time evolution of a bidisperse bed sheared by a viscous liquid. Different from previous experiments, the density ratio between grains and fluid is 2.7, close to values found in rivers and oceans. We show the existence of diffusive, advective, and constrained regions, that most of segregation occurs during the very first stages of the flow, and that bed hardening becomes stronger while bedload and creep weaken along time. We obtain the segregation rates, their evolution along time, their variation with the applied shearing, and the time evolution of creeping and bedload. Finally, we propose characteristic times for the segregation of large particles and bed hardening. Our results shed light on the complex motion of sheared beds existing in nature, such as river beds and creeping lands.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3