Oxidation mechanism of high-volume fraction SiCp/Al composite under laser irradiation and subsequent machining

Author:

Liu Hanliang1,Zhao Guolong2,Nian Zhiwen2,Huang Zhipeng1,Yang Kai1,Liu Conghua1,Wang Peng1,Diao Zhenkuan1

Affiliation:

1. Beijing Spacecrafts 1 , Beijing 100094, People’s Republic of China

2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics 2 , Nanjing 210016, People’s Republic of China

Abstract

Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles (hereinafter referred to as an SiCp/Al composite) faces problems such as rapid tool wear, high specific cutting force, and poor surface integrity. Instead, a promising method for solving these problems is laser-induced oxidation-assisted milling (LOAM): under laser irradiation, the local workpiece material reacts with oxygen, thus forming loose and porous oxides that are easily removed. In the present work, the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides, with laser irradiation experiments performed on a 65% SiCp/Al composite with various laser parameters and auxiliary gases (oxygen, nitrogen, and argon). With increasing laser pulse energy density, both the ablated groove depth and the width of the heat-affected zone increase. When oxygen is used as the auxiliary gas, an oxide layer composed of SiO2 and Al2O3 forms, and CO2 is produced and escapes from the material, thereby forming pores in the oxides. However, when nitrogen or argon is used as the auxiliary gas, a recast layer is produced that is relatively difficult to remove. Under laser irradiation, the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove, and as the laser scanning path advances, the produced oxides accumulate to form an oxide layer. LOAM and conventional milling are compared using the same milling parameters, and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.

Publisher

AIP Publishing

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3