The effects of the shape of a capsid on the ejection rate of a single polymer chain through a nanopore

Author:

Park Chung Bin1ORCID,Sung Bong June1ORCID

Affiliation:

1. Department of Chemistry, Sogang University , Seoul 04107, Republic of Korea

Abstract

The shape of a viral capsid affects the equilibrium conformation of DNA inside the capsid: the equilibrium DNA conformation inside a spherical capsid is a concentric spool while the equilibrium conformation inside an elongated capsid is a twisted toroid. The conformation of DNA, jammed inside the capsid due to high internal pressure, influences the ejection kinetics of the DNA from the capsid. Therefore, one would expect that the DNA ejection kinetics would be subject to the shape of the viral capsid. The effects of the capsid shape on the ejection, however, remain elusive partly due to a plethora of viral capsid shapes. In this work, we perform Langevin dynamics simulations for the ejection of a polymer chain from three different types of viral capsids: (1) spherical, (2) cubic, and (3) cuboid capsids. We find that the ejection rate of the polymer chain from the spherical capsid is much faster than that from either cubic or cuboid capsids. The polymer chain in the spherical capsid may undergo collective rotational relaxation more readily such that the polymer chain becomes more mobile inside the spherical capsid, which enhances the ejection kinetics. On the other hand, a threading motion is dominant inside cubic and cuboid capsids. We also find that the effects of the collective rotational motion become more significant for a more rigid chain inside a capsid.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3