Accuracy improvement of laser tracker registration based on enhanced reference system points weighting self-calibration and thermal compensation

Author:

Ma Shoudong1ORCID,Lu Yong1,Deng Kenan1ORCID,Wu Zhihang2,Xu Xu2

Affiliation:

1. School of Mechatronic Engineering, Harbin Institute of Technology 1 , Harbin 150001, China

2. Hangzhou Ying Ming Cryogenic Vacuum Engineering Co. Ltd. 2 , Hangzhou, Zhejiang 310000, China

Abstract

Improving the accuracy of large measurement systems consisting of multiple laser trackers and Enhanced Reference System (ERS) points is technically challenging. In practice, standard devices with precise distance limits are often used to improve the registration accuracy of laser trackers. However, these standard devices are expensive and need to be calibrated by the Coordinate Measuring Machine (CMM). In addition, the stability of ERS points can significantly affect registration errors. Therefore, this paper proposes a laser tracker registration method based on ERS point-weighted self-calibration and thermal deformation compensation. First, a self-calibration method for simple standard devices based on multilateration measurements is presented, which only utilizes large measurement systems without additional high-precision measurement instruments. Based on this, a weighted registration optimization algorithm for the registration process of a relocation laser tracker is proposed. Then, the position errors of ERS points caused by temperature changes are calculated and compensated based on the thermal deformation coefficient of large structural components. The compensated ERS points are used for the registration of the laser trackers. Finally, the effectiveness of the proposed method is demonstrated by a field measurement experiment on a large spherical shell. Compared with the most widely used benchmark method, the proposed method reduces the average registration error of all ERS points from 0.103 to 0.02 mm.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3