Affiliation:
1. Department of Precision Instruments, Tsinghua University , Beijing 100084, China
Abstract
Optical diffraction tomography can be performed with low phototoxicity and photobleaching to analyze 3D cells and tissues. It is desired to develop high throughput and powerful data processing capabilities. We propose high bandwidth holographic microscopy (HBHM). Based on the analyticity of complex amplitudes, the unified holographic multiplexing transfer function is established. A high bandwidth scattering field is achieved via the k-space optical origami of two 2D wavefronts from one interferogram. Scanning illumination modulates the high-horizontal and axial k-space to endow synthetic-aperture from 2D high space-bandwidth product (SBP) scattering fields. The bright-field counterpart SBP of a single scattering field from HBHM is 14.6 megapixels, while the number of pixels is only 13.7 megapixels. It achieves an eight-fold SBP enhancement under the same number of pixels and diffraction limit. The HBHM paves the way toward the performance of high throughput, large-scale, and non-invasive histopathology, cell biology, and industrial inspection.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献