Experimental observation of the transition between hose and self-modulation instability regimes

Author:

Del Dotto A.1ORCID,Berceanu A. C.2,Biagioni A.3ORCID,Ferrario M.3,Fortugno G.3,Pompili R.3ORCID,Romeo S.3ORCID,Rossi A. R.4ORCID,Santangelo P.3ORCID,Shpakov V.3,Zigler A.35ORCID

Affiliation:

1. ENEA, C.R. Brasimone, 40032 Camugnano, Bologna, Italy

2. ELI-NP and Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), 30 Reactorului Street, 077125 Măgurele, Romania

3. Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy

4. INFN-MI, via G. Celoria 16, 20133 Milan, Italy

5. Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

Abstract

Plasma-based acceleration is one of the most promising technologies for the development of compact accelerators providing high-quality beams for research, medical, and industrial applications. The interaction with the plasma, however, can produce detrimental effects on the particle beam, such as the hose-instability, and ultimately limit its implementation. Several methods have been proposed to suppress such a process, for instance, by triggering and bringing to saturation the self-modulation instability. In the framework of plasma acceleration, we present, for the first time, the experimental observation of the transition from hose to self-modulation instability regimes. The measurements are obtained by using an ultra-relativistic electron beam interacting with the plasma confined in a capillary. The results provide a more comprehensive picture of the beam–plasma interaction and are validated with complete particle-in-cell simulations.

Funder

Horizon 2020 Framework Programme

Instituto Nazionale di Fisica Nucleare

Cordis

Nucleu programme

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hosing of a Long Relativistic Particle Bunch in Plasma;Physical Review Letters;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3