Gas physisorption impact on prolate dust in free-molecule flows: A static study

Author:

Yu Hsin-ChenORCID,Zhang XiaopingORCID,Wu LeiORCID,Ren Zhongzhou,He PeishanORCID

Abstract

Gas–solid coupling systems operating at low pressure or the micro/nanoscale generally exist in nature and industrial manufacture. Although the gas-scattering model has been widely used to study this problem on the dust surface, the consideration of gas physisorption was often neglected in previous applications of gas–surface scattering models. Therefore, this study aims to investigate the distribution of gas physisorption on the dust surface and assess its impact on the static force experienced by nonspherical dust in free-molecule flows. In this study, the prolate dust spinning around its minor axis is considered and the in-house direct simulation Monte Carlo code is used. Results show that gas physisorption on prolate dust is influenced by changes in gas number densities, Mach number, and dust shape. Furthermore, the gas physisorption enhances the gas–dust coupling for dust with a smooth surface at low gas pressure, attributed to the increasing ratio of Maxwell diffuse scattering of gas molecules on the gas-adsorbed part of the surface. Hence, gas physisorption was suggested as a potential factor for gas–dust coupling at low gas pressure.

Funder

Fundo para o Desenvolvimento das Ciências e da Tecnologia

Space Optoelectronic Measurement and Perception Laboratory of BICE

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3