Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy

Author:

Carter-Fenk Kevin1ORCID,Head-Gordon Martin12ORCID

Affiliation:

1. Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California 1 , Berkeley, California 94720, USA

2. Chemical Sciences Division, Lawrence Berkeley National Laboratory 2 , Berkeley, California 94720, USA

Abstract

Second-order Møller-Plesset perturbation theory (MP2) often breaks down catastrophically in small-gap systems, leaving much to be desired in its performance for myriad chemical applications such as noncovalent interactions, thermochemistry, and dative bonding in transition metal complexes. This divergence problem has reignited interest in Brillouin-Wigner perturbation theory (BWPT), which is regular at all orders but lacks size consistency and extensivity, severely limiting its application to chemistry. In this work, we propose an alternative partitioning of the Hamiltonian that leads to a regular BWPT perturbation series that, through the second order, is size-extensive, size-consistent (provided its Hartree–Fock reference is also), and orbital invariant. Our second-order size-consistent Brillouin-Wigner (BW-s2) approach can describe the exact dissociation limit of H2 in a minimal basis set, regardless of the spin polarization of the reference orbitals. More broadly, we find that BW-s2 offers improvements relative to MP2 for covalent bond breaking, noncovalent interaction energies, and metal/organic reaction energies, although rivaling coupled-cluster with single and double substitutions for thermochemical properties.

Funder

U.S. Department of Energy

National Institute of General Medical Sciences

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3