Efficient and controllable flame method to generate rich oxygen vacancies in WO3 nanosheet arrays to enhance solar water oxidation

Author:

Chen Biyi1,Li Dan1,Chen Xue1,Li Longhua1ORCID,Chen Min1,Shi Weidong1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China

Abstract

A WO3 photoanode is a promising candidate for photoelectrochemical (PEC) water splitting due to its earth-abundance, highly tunable composition, excellent stability, and electrical conductivity. However, its actual PEC performances are inferior to theoretical values, which are challenged by rapid recombination of photogenerated carriers and sluggish water oxidation kinetics. Here, a flame method that has the advantages of being simplistic, controllable, and ultra-efficient is reported to generate a rich oxygen vacancy (OV) in WO3 nanosheet arrays to enhance the PEC performance. The morphology, crystallinity, and PEC performance of the WO3 nanosheet arrays were significantly sensitive to the process parameters. By optimizing the process, rich surface OVs were introduced in the WO3 photoanode within 30 s, while the overall morphology, crystallinity, and conductive substrate were well preserved. The optimum deficient WO3 photoanode exhibited a photocurrent density of 2.40 mA cm−2, which is 3.33 times as high as that of the untreated counterpart. The OVs significantly improved the PEC performance of the WO3 photoanode by enhanced carrier transports and stronger activation for OH ions. Moreover, the proposed flame method exhibits great versatility in prevalent metal oxides for introducing OVs.

Funder

National Natural Science Foundation of China

Indursty Prospect and Key Core Technologyfo Jiangsu province

Research and Innovation Plan for Postgraduates in Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3