Abstract
To further understand a muzzle combustion mechanism in high-altitude firing, the influence of supersonic flow on a muzzle combustion phenomenon is investigated. The set of internal ballistic equations is employed, providing accurate velocity and pressure when the projectile moves to the muzzle. Multispecies transport Navier–Stokes equations with complex chemical reactions are solved by coupling a real gas equation of state, the Soave–Redlich–Kwong model, and a detailed chemical reaction kinetic model. The development of muzzle flow with chemical reaction is simulated. The interaction of chemical reactions with the muzzle flow field is obtained by numerical simulation in order to explain the muzzle combustion phenomenon of fire at supersonic flight. The mechanism of muzzle combustion influenced by supersonic incoming flow is analyzed in detail. It is demonstrated from the results that the shock wave and the expansion of the jet are restrained so that the combustion is compressed behind the projectile, at the same time generating a second region of combustion behind the muzzle under the influence of supersonic incoming flow.
Funder
Foundation for Innovative Research Groups of the National Natural Science Foundation of China
Aeronautical Science Foundation of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献