Leveraging graph neural networks and neural operator techniques for high-fidelity mesh-based physics simulations

Author:

Jin Zeqing1ORCID,Zheng Bowen1ORCID,Kim Changgon2,Gu Grace X.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of California 1 , Berkeley, California 94720, USA

2. Hyundai Motor Company 2 , 150 Hyundaiyeonguso-ro, Namyang, Hwaseoung, Gyeonggi 18280, South Korea

Abstract

Developing fast and accurate computational models to simulate intricate physical phenomena has been a persistent research challenge. Recent studies have demonstrated remarkable capabilities in predicting various physical outcomes through machine learning-assisted approaches. However, it remains challenging to generalize current methods, usually crafted for a specific problem, to other more complex or broader scenarios. To address this challenge, we developed graph neural network (GNN) models with enhanced generalizability derived from the distinct GNN architecture and neural operator techniques. As a proof of concept, we employ our GNN models to predict finite element (FE) simulation results for three-dimensional solid mechanics problems with varying boundary conditions. Results show that our GNN model achieves accurate and robust performance in predicting the stress and deformation profiles of structures compared with FE simulations. Furthermore, the neural operator embedded GNN approach enables learning and predicting various solid mechanics problems in a generalizable fashion, making it a promising approach for surrogate modeling.

Funder

Alfred P. Sloan Foundation

Hyundai Motor Group

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3