Understanding the surface wave characteristics using 2D particle-in-cell simulation and deep neural network

Author:

Mishra Rinku12ORCID,Adhikari S.3ORCID,Mukherjee Rupak4ORCID,Saikia B. J.1

Affiliation:

1. Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782402, Assam, India

2. Institute for Plasma Research, HBNI, Bhat, Gandhinagar 382428, Gujarat, India

3. Department of Physics, University of Oslo, Blindern, PO Box 1048, NO-0316 Oslo, Norway

4. Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

Abstract

The characteristics of the surface waves along the interface between a plasma and a dielectric material have been investigated using kinetic particle-in-cell simulations. A microwave source of GHz frequency has been used to trigger the surface wave in the system. The outcome indicates that the surface wave gets excited along the interface of plasma and the dielectric tube and appears as light and dark patterns in the electric field profiles. The dependency of radiation pressure on the dielectric permittivity and supplied input frequency has been investigated. Further, we assessed the capabilities of neural networks to predict the radiation pressure for a given system. The proposed deep neural network model is aimed at developing accurate and efficient data-driven plasma surface wave devices.

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3