Asymmetrically aligned focused acoustic waves for enhancing sensing performance of electrochemical microarrays

Author:

Zheng Tengfei1ORCID,Liu Yue1,Fu Yongqing2ORCID,Wang Chaohui13ORCID

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University 1 , Xi'an 710049, China

2. Faculty of Engineering and Environment, Northumbria University 2 , Newcastle upon Tyne NE1 8ST, United Kingdom

3. Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University 3 , Xi'an 710049, China

Abstract

Microelectrode-based electrochemical detection methods have been extensively applied in microfluidic sensors, but there are significant challenges for achieving fast and efficient contact between analytes and the microarray electrodes and, thus, enhancing the sensing performance. In this paper, we develop a technique using asymmetrically aligned focused surface acoustic waves (FSAWs) to enhance sensitivity of microarray electrodes detection. Effects of various focusing angles of the FSAW devices on the values and distributions of acoustic wave amplitudes were analyzed using finite element simulations, and torques, which determine the acoustic streaming velocity, were calculated as a function of values and distributions of amplitude. Based on simulation results, the FSAW device with a focusing angle of 30° was used to investigate sensitivity of microarray electrochemical sensors. The maximum value of instantaneous current was increased up to 11 times, researching a current value of 4.3 μA with the applied FSAWs. This developed electrochemical sensing platform shows great potentials for highly sensitive food quality control and biochemical detections.

Funder

National Natural Science Foundation of China

National science foundation for post doctoral scientists of china

International exchange Gant IEC/NSFC

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3