Supersaturation dependent nucleation of methane + propane mixed-gas hydrate

Author:

Uchida Tsutomu1ORCID,Sugibuchi Ren2,Hayama Masato2,Yamazaki Kenji1ORCID

Affiliation:

1. Division of Applied Physics, Faculty of Engineering, Hokkaido University 1 , Sapporo 060-8628, Japan

2. Division of Applied Physics, Graduate School of Engineering, Hokkaido University 2 , Sapporo 060-8628, Japan

Abstract

Before hydrates can be widely used in industry, we should better understand the problematic issues of hydrate nucleation, particularly its stochastic nature. Here, we report on measurements of the nucleation probability of mixed-gas hydrates in which the guest molecules are a mixture of methane and propane. For the pure cases, at a supersaturation near 1.0, we had previously measured an induction time for the methane hydrate of about 1 h, whereas for the propane hydrate, it was over one day. Using the same experimental setup, we examine here the nucleation probability for a mixture of 90% methane and 10% propane as the guest gas for a range of supersaturations. For the experiments, the temperature was 274 ± 0.5 K and the stirring rate was about 300 rpm. The experiments were repeated at least ten times under the same condition, exchanging the sample water every time. We define the nucleation probability at a given time as the fraction of trials that nucleated by that time and then determine the nucleation probability distribution. The resulting nucleation frequency is found to have a power-law relation to supersaturation. Then, we examine how the nucleation frequency is affected by the existence of ultrafine bubbles in the initial water. We find that the ultrafine bubbles increase the nucleation frequency but much less than that of typical changes in supersaturation.

Funder

Hokkaido Gas Co. Ltd.

Arai Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3