Interplay of phoresis and self-phoresis in active particles: Transport properties, phoretic, and self-phoretic coefficients

Author:

Arango-Restrepo A.1ORCID,Rubi J. M.1ORCID

Affiliation:

1. Condensed Matter Department, University of Barcelona , 08028 Barcelona, Spain

Abstract

Self-propelled synthetic particles have attracted scientific interest due to their potential applications as nanomotors in drug delivery and their insight into bacterial taxis. Research on their dynamics has focused on understanding phoresis and self-phoresis in catalytic Janus particles at both the nano- and microscale. This study explores the combined effects of self-diffusiophoresis and self-thermophoresis induced by exothermic chemical reactions on the surface of active particles moving in non-electrolyte media. We examine how these phoretic phenomena interact, influenced by the coupling between chemical reactions, heat generation, and the concentration and temperature fields at the particle interface. Using a theoretical framework based on the induction of surface tension gradients at the particle interface, we analyze the phoretic dynamics, quantifying parameters such as effective diffusivities, transport coefficients, and, most importantly, phoretic coefficients. Our findings provide insights into the conditions that dictate coupled or independent phoretic behaviors, with implications for drug delivery and nanomotor applications, enabling customized transport processes at the nanoscale.

Funder

Ministerio de Ciencia e Innovación

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3