γ-Surfaces for molecular crystal cyclotetramethylene-tetranitramine (β-HMX)

Author:

Zhang Zhaocheng1ORCID,Picu Catalin R.1ORCID

Affiliation:

1. Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Abstract

The γ-surface represents the energetic cost associated with relative, rigid body sliding of crystal planes and contains useful information related to plastic deformation of the respective crystal. Here, we present γ-surfaces for the most active glide planes of the energetic molecular crystal cyclotetramethylene-tetranitramine in the monoclinic β phase, i.e., (101) and (011), at pressures up to 15 GPa. We observe the existence of stable staking faults in both planes and at all pressures and report the increase in the stacking fault energy with pressure. We also report the energetic barriers for sliding along minimum energy paths in various directions contained in these planes as well as the critical resolved shear stress at which the crystal becomes unstable in the absence of crystal defects. [100] traces of the γ-surface for multiple planes such as (001), (010), and (021) are further evaluated in view of the previously reported importance of this slip direction for dislocation cross-slip. It is observed that increasing the pressure does not modify the topology of the γ-surface in an essential way, which implies that although barriers for slip increase, the general phenomenology of dislocation motion is not modified qualitatively by the pressure. The energy barriers increase faster with pressure in the (011) plane, and hence, it is implied that the (101) plane is the most active glide plane at high pressures. The results are generally relevant for studies of plastic deformation in this molecular crystal.

Funder

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3