Nanoindentation applied to ion-irradiated and neutron-irradiated Fe-9Cr and Fe-9Cr-NiSiP model alloys

Author:

Bergner Frank1ORCID,Kaden Cornelia1ORCID,Das Aniruddh1ORCID,Merino Susana2ORCID,Diego Gonzalo2ORCID,Hähner Peter3

Affiliation:

1. Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden, Germany

2. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain

3. European Commission, DG Joint Research Centre, Nuclear Safety and Security Directorate, Westerduinweg 3, 1755 LE Petten, The Netherlands

Abstract

Nanoindentation of ion-irradiated materials has attracted much interest as a tool envisaged to derive the dose dependence of bulk-equivalent hardness from small samples. A major challenge arises from the steep damage gradient in the thin ion-irradiated layer and its unavoidable interplay with the indentation size effect. The present study relies on a number of choices aimed at simplifying the interpretation of the results and strengthening the conclusions. The studied alloys are two ferritic Fe-9Cr model alloys differing in controlled amounts of Ni, Si, and P known to enhance irradiation hardening. Both ion-irradiated (5 MeV Fe2+ ions) and neutron-irradiated samples along with the unirradiated references were investigated using Berkovich tips. According to the collaborative nature of the study, tests were conducted in two different laboratories using different equipment. A generalized Nix–Gao approach was applied to derive the bulk-equivalent hardness and characteristic length scale parameters for the homogeneous unirradiated and neutron-irradiated samples. Comparison with Vickers hardness indicates a 6% overestimation of the bulk-equivalent hardness as compared to the ideal correlation. For the case of ion irradiation, a first model assumes a homogeneous irradiated layer on a homogeneous substrate, while a second model explicitly takes into account the damage gradient. The first model was combined with both the original and the generalized Nix–Gao relation. We have found that the results revealed for Fe-9Cr vs Fe-9Cr-NiSiP are compatible with expectations based upon known irradiation-induced microstructures. The bulk-equivalent hardness derived for ion-irradiated samples reasonably agrees with the observation for neutron-irradiated samples.

Funder

European Commission

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3