Leakage current reduction of normally off hydrogen-terminated diamond field effect transistor utilizing dual-barrier Schottky gate

Author:

Chen Genqiang12ORCID,Wang Wei12,He Shi12,Wang Juan12,Zhang Shumiao12,Zhang Minghui12ORCID,Wang Hong-Xing12ORCID

Affiliation:

1. Key Lab for Physical Electronics and Devices, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, People's Republic of China

2. Institute of Wide Band Gap Semiconductors, School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, People's Republic of China

Abstract

Normally Off diamond field-effect transistor (FET) is demanded for energy saving and safety for practical application. Metal/diamond Schottky junction serving as the gate is a simple and effective approach to deplete holes under the gate, whereas low Schottky barrier height (SBH) is undesirable. In this work, a dual-barrier Schottky gate hydrogen,oxygen-terminated diamond (H,O-diamond) FET (DBG-FET) with Al gate was realized. Normally Off DBG-FET with enhanced SBH and reduced leakage was achieved. H,O-diamond, which was defined by x-ray photoelectron spectroscopy (XPS) technique, was realized by ultraviolet ozone (UV/O3) treatment with nanoparticle-Al mask. The enlarged SBH of 0.94 eV owing to the C–O bond minimized the diode reverse current and nicely shut down the DBG-FET at zero gate bias. Moreover, the forward current of diode can be well-reduced by hundred times ascribed to oxidized Al nanoparticles during the UV/O3 process. Based on this diode gate structure, the maximum drain current density, transconductance, on/off ratio, and subthreshold swing of the normally off DBG-FET are 21.8 mA/mm, 9.1 mS/mm, 109, and 96 mV/dec, respectively. The DBG-FET is expected to promote the development of normally off diamond FETs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Projects of Shaanxi Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3