A self-referenced optical phase noise analyzer for quantum technologies

Author:

Freund R.1ORCID,Marciniak Ch. D.1ORCID,Monz T.1ORCID

Affiliation:

1. Universität Innsbruck, Institut für Experimentalphysik , Innsbruck, Austria

Abstract

Second generation quantum technologies aim to outperform classical alternatives by utilizing engineered quantum systems. Maintaining the coherence required to enable any quantum advantage requires detailed knowledge and control over the noise that the hosting system is subjected to. Characterizing noise processes via their power spectral density is routinely done throughout science and technology and can be a demanding task. Determining the phase noise power spectrum in leading quantum technology platforms, for example, can be either outside the reach of many phase noise analyzers or prohibitively expensive. In this work, we present and characterize a low-complexity, low-cost optical phase noise analyzer based on the short-delay optical self-heterodyne measurements for quantum technology applications. Using this setup, we compare two ≈1 Hz linewidth ultra-stable oscillators near 729 nm. Their measurements are used as a baseline to determine and discuss the noise floor achieved in this measurement apparatus with a focus on limitations and their tradeoffs. The achieved noise floor in this all-stock-component implementation of an optical phase noise analyzer compares favorably with commercial offerings. This setup can be used particularly without a more stable reference or operational quantum system as a sensor as would be the case for many component manufacturers.

Funder

Horizon 2020 Framework Programme

Army Research Office

Austrian Science Fund

IQI GmbH

Österreichische Forschungsförderungsgesellschaft

Publisher

AIP Publishing

Reference41 articles.

1. The role of master clock stability in quantum information processing

2. Entanglement on an optical atomic-clock transition

3. A. Cao , W. J.Eckner, T. L.Yelin, A. W.Young, S.Jandura, L.Yan, K.Kim, G.Pupillo, J.Ye, N. D.Oppong, arXiv:2402.16289 (2024).

4. R. Finkelstein , R. B.-S.Tsai, X.Sun, P.Scholl, S.Direkci, T.Gefen, J.Choi, A. L.Shaw, and M.Endres, arXiv:2402.16220 (2024).

5. Limits on atomic qubit control from laser noise

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3