Effects of various inlet parameters on the computed flow development in a bidirectional vortex chamber

Author:

Sharma Gaurav1ORCID,Majdalani Joseph1ORCID

Affiliation:

1. Department of Aerospace Engineering, 211 Davis Hall, Auburn University, Auburn, Alabama 36849-5338, USA

Abstract

We vary the inflow properties in a finite-volume solver to investigate their effects on the computed cyclonic motion in a right-cylindrical vortex chamber. The latter comprises eight tangential injectors through which steady-state air is introduced under incompressible and inviscid conditions. To minimize cell skewness around injectors, a fine tetrahedral mesh is implemented first and then converted into polyhedral elements, namely, to improve convergence characteristics and precision. Once convergence is achieved, our principal variables are evaluated and compared using a range of inflow parameters. These include the tangential injector speed, count, diameter, and elevation. The resulting computations show that well-resolved numerical simulations can properly predict the forced vortex behavior that dominates in the core region as well as the free vortex tail that prevails radially outwardly, beyond the point of peak tangential speed. It is also shown that augmenting the mass influx by increasing the number of injectors, injector size, or average injection speed further amplifies the vortex strength and all peak velocities while shifting the mantle radially inwardly. Overall, the axial velocity is found to be the most sensitive to vertical displacements of the injection plane. By raising the injection plane to the top half portion of the chamber, the flow character is markedly altered, and an axially unidirectional vortex is engendered, particularly, with no upward motion or mantle formation. Conversely, the tangential and radial velocities are found to be axially independent and together with the pressure distribution prove to be the least sensitive to injection plane relocations.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3