Affiliation:
1. Department of Mathematics, SRM Institute of Science and Technology 1 , Kattankulathur 603 203, Tamil Nadu, India
2. Center of Excellence for Ocean Engineering, National Taiwan Ocean University 4 , Keelung 202301, Taiwan
Abstract
In this paper, the effects of double-submerged breakwaters and trenches on the hydrodynamic performance of an oscillating water column (OWC) are investigated. The multi-domain boundary element method is used to tackle the physical problem of wave scattering and radiation from the device. The role of the height of the breakwaters, depth of the trenches, width of the breakwaters and trenches, spacing between the structures, length of the OWC chamber, and other wave and structural parameters is investigated on the efficiency of OWC. The study reveals that there is an oscillating pattern of the efficiency curve in the presence of single or double breakwater/trenches; this pattern is absent when the bottom is flat. Moreover, compared to single or no breakwaters/trenches, the occurrence of full OWC efficiency is higher in the presence of double breakwaters/trenches. Furthermore, the amplitude of the oscillating pattern in the efficiency curve increases with an increase in the height and depth of the breakwaters and trenches, respectively. For some particular wave and structural parameters, zero OWC efficiency occurs nearly k0h=3.4 within 0<k0h<5 (k0 wave number and h water depth). This zero efficiency moves toward small wave numbers as the spacing between OWC and rigid breakwater/trench increases. The radiation conductance of OWC decreases with an increase in the barrier height. The findings outline the structural criteria that can be employed to build and deploy an effective OWC device.
Funder
Science and Engineering Research Board
State Key laboratory of Hydraulic Engineering Simulation and Safety
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献