Effect of hydrogen on the unintentional doping of 4H silicon carbide

Author:

Huang Yuanchao12ORCID,Wang Rong12ORCID,Zhang Naifu12ORCID,Zhang Yiqiang3,Yang Deren12ORCID,Pi Xiaodong12ORCID

Affiliation:

1. State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

2. Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310027, China

3. School of Materials Science and Engineering and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China

Abstract

High-purity semi-insulating (HPSI) 4H silicon carbide (4H-SiC) single crystals are critical semiconductor materials for fabricating GaN-based high-frequency devices. One of the major challenges for the growth of HPSI 4H-SiC single crystals is the unintentional doping of nitrogen (N) and boron (B). The addition of hydrogen has been supposed to mitigate unintentional doping. However, the underlying mechanism has not been well understood. In this work, the role of hydrogen in the growth of HPSI 4H-SiC single crystals is investigated by first-principles formation-energy calculations. We find that the addition of hydrogen significantly mitigates N doping while hardly affecting B doping. Once hydrogen is added, hydrogen may adsorb at the growing surface of 4H-SiC, leading to surface passivation. Since N can react with hydrogen to form stable NH3 (g), the chemical potential of N is reduced, so that the formation energy of N in 4H-SiC increases. Hence, the critical partial pressure of nitrogen required for the growth of HPSI 4H-SiC single crystals increases by two orders of magnitude. Moreover, we reveal that the adjustment of relative B and N doping concentrations has a substantial impact on the Fermi energy of HPSI 4H-SiC. When the doping concentration of N is higher than that of B, N interacts with carbon vacancies (VC) to pin the Fermi energy at Z1/2. When the doping concentration of B is higher than that of N, the Fermi energy is pinned at EH6/7. This explains that the resistivity of unintentionally doped HPSI 4H-SiC may vary.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3