Emergence of debubblers in microfluidics: A critical review

Author:

Yang Mingpeng123ORCID,Sun Nan1,Luo Yong123,Lai Xiaochen123,Li Peiru1,Zhang Zhenyu1

Affiliation:

1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Bubbles in microfluidics—even those that appear to be negligibly small—are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas–liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.

Funder

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

the Strartup Foundation for Introducing Talent of NUIST

the Innovation and Entrepreneurship Doctor Program of Jiangsu Province

the Jiangsu Government Scholarship for Overseas Studies

Publisher

AIP Publishing

Subject

Condensed Matter Physics,General Materials Science,Fluid Flow and Transfer Processes,Colloid and Surface Chemistry,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3